推荐:解读用最简单的步骤备份SQL数据库的文件到本地用最简单的步骤备份sql数据库的文件到本地:
以下为引用的内容:
response.Charset = utf-8
Session.Codepage = 65001
考虑下面的 PL/SQL 代码,这段代码生成一个 XML 格式的矩阵样式的报表:
以下为引用的内容:
declare
l_count integer;
begin
dbms_output.put_line('<matrix>');
-- generate matrix of parts by country
for part in (select id,description from parts order by description) loop
dbms_output.put_line('<row>');
dbms_output.put_line('<cell>'part.description'</cell>');
for country in (select code from countries order by name) loop
select sum(cnt) into l_count from orders
where part_id = part.id and cc = country.code;
dbms_output.put_line('<cell>'nvl(l_count,0)'</cell>');
end loop;
dbms_output.put_line('</row>');
end loop;
dbms_output.put_line('</matrix>');
end;
|
假如在这个例子中 parts 和 countries 有很多行数据,那么性能就会趋于下降。这是因为,在 PL/SQL 中,每次碰到一个游标 FOR 循环,在重新查询并获得数据时,都会有一个切换到 SQL 的上下文切换。
以一些服务器端内存为代价,提高这种构造的速度是有可能做到的——假如动态构建 PL/SQL 数据表和矩阵单元格条目就可以提高速度。例如:
以下为引用的内容:
declare
type part_tbl_type is table of parts%rowtype index by binary_integer;
part_tbl part_tbl_type;
--
type country_tbl_type is table of countries%rowtype index by binary_integer;
country_tbl country_tbl_type;
--
type cell_rec is record
(
part_id orders.part_id%type,
cc orders.cc%type,
cnt orders.cnt%type
);
type cell_tbl_type is table of cell_rec index by binary_integer;
cell_tbl cell_tbl_type;
--
i pls_integer;
begin
-- build rows
for row in (select * from parts order by description) loop
part_tbl(part_tbl.count 1) := row;
end loop;
-- build columns
for col in (select * from countries order by name) loop
country_tbl(country_tbl.count 1) := col;
end loop;
-- build cells
for cell in (select part_id,cc,sum(cnt) from orders group by part_id,cc) loop
cell_tbl(cell_tbl.count 1) := cell;
end loop;
dbms_output.put_line('<matrix>');
-- generate matrix of parts by country
i := cell_tbl.first;
for row in part_tbl.first .. part_tbl.last loop
dbms_output.put_line('<row>');
dbms_output.put_line('<cell>'part_tbl(row).description'</cell>');
for col in country_tbl.first .. country_tbl.last loop
if cell_tbl(i).part_id = part_tbl(row).id
and cell_tbl(i).cc = country_tbl(col).code
then
dbms_output.put_line('<cell>'cell_tbl(i).cnt'</cell>');
i := i 1;
else
dbms_output.put_line('<cell>0</cell>');
end if;
end loop;
dbms_output.put_line('</row>');
end loop;
dbms_output.put_line('</matrix>');
end;
|
游标
游标的 FOR 循环现在是独立运行的,并且特定记录、特定字段、特定单元格的数据被拷贝到三个 PL/SQL 表中。
然后利用记录和字段具有特定顺序这一事实,将结果构建到一个 PL/SQL 表的矩阵中。由于 GROUP BY 的隐式 SORT/MERGE 操作,单元格具有同样的顺序。单元格查询已经被减少到一个查询,替代了原来的矩阵每个单元格使用一个查询。
假如字段的数目相当小,那么我们可以使用 BULK COLLECT 构建表。BULK COLLECT 不答应表记录的填充,所以我们就需要为用于这个操作的每一列数据创建一个独立的表。前面的例子可以采用 BULK COLLECT 重写为另外一种形式。
以下为引用的内容:
declare
type part_id_tbl_type is table of parts.id%type;
type part_desc_tbl_type is table of parts.description%type;
part_id_tbl part_id_tbl_type;
part_desc_tbl part_desc_tbl_type;
--
type country_code_tbl_type is table of countries.code%type;
country_code_tbl country_code_tbl_type;
--
type cell_cnt_tbl_type is table of orders.cnt%type;
cell_part_id_tbl part_id_tbl_type;
cell_country_tbl country_code_tbl_type;
cell_cnt_tbl cell_cnt_tbl_type;
--
i pls_integer;
begin
-- gather rows
select id,description
bulk collect into part_id_tbl,part_desc_tbl
from parts
order by description;
-- gather columns
select code
bulk collect into country_code_tbl
from countries
order by name;
-- gather cells
select part_id,cc,sum(cnt)
bulk collect into cell_part_id_tbl,cell_country_tbl,cell_cnt_tbl
from orders
group by part_id,cc;
dbms_output.put_line('<matrix>');
-- generate matrix of parts by country
i := cell_cnt_tbl.first;
for row in part_id_tbl.first .. part_id_tbl.last loop
dbms_output.put_line('<row>');
dbms_output.put_line('<cell>'part_desc_tbl(row)'</cell>');
for col in country_code_tbl.first .. country_code_tbl.last loop
if cell_part_id_tbl(i) = part_id_tbl(row)
and cell_country_tbl(i) = country_code_tbl(col)
then
dbms_output.put_line('<cell>'cell_cnt_tbl(i)'</cell>');
i := i 1;
else
dbms_output.put_line('<cell>0</cell>');
end if;
end loop;
dbms_output.put_line('</row>');
end loop;
dbms_output.put_line('</matrix>');
|
分享:如何在SAN上创建SQL Server群集Storage area networks(SANs)使大量存储量连接到服务器变得毫不费力。SANs对于SQL Server安装特别有用。企业数据库不仅仅只需要做大量的存储,它们还有一些不断增长存储的需要。也