当前位置:首页 > 范文 > 有趣的数学问题经典作文

有趣的数学问题经典作文

格式:DOC 上传日期:2024-10-29 07:45:19
有趣的数学问题经典作文
时间:2024-10-29 07:45:19   小编:

数学问题总是充满趣味,引发我们思考和探索。从古至今,人们一直在解决各种数学难题,如费马大定理、哥德巴赫猜想等。这些经典问题激发了无数数学家的智慧和创造力,也让我们更加深入地了解数学的奥秘和魅力。

第一篇

10月31日星期日晴

今天老爸给我一个任务,要我估算一下住在辰凯小区里大约有多少人?

这个任务我怎么完成呢?不可能叫我一家一家去统计吧?我想了好久,如果我能知道辰凯小区有多少幢房子,每幢房子有几户,每户有多少人,不就算出来了吗!

哪我怎样知道辰凯小区有多少幢房子呢?我想起来了,辰凯小区有一块小区分布图。我立即下楼找到分布图,我看到分布图上面最大的门牌号是161。但不是所有的161幢楼房一样高,有别墅、小高层、多层公寓。其中有3幢11层高的小高层,各有2个门牌号;别墅有10栋,分别1个门牌号。剩下的全是6层高的多层公寓。多层公寓共有多少门牌号呢?应该这样算:161-3×2-10×1=145。

知道了门牌数和层数,我就能算出户数,但每户应该算几个人呢?我假设每户住3人。别墅的总人数=10×3=30人;小高层的总人数=3×2×11×2×3=396人;多层公寓总人数:145×6×2×3=5220人。因此小区大约总人数有30+396+5220=5646人。

完成了爸爸的任务后,我觉得很开心,觉得自己还挺能干的,还能统计出小区居住的人数来,不容易。

第二篇

《三只小猪》讲述的是一只叫做“苏格拉底”的大灰狼和三只小猪的故事。苏格拉底和他的妻子克桑蒂贝夫妇想吃小猪,可是三只小猪住在五间房间里,怎样才能抓到小猪呢?大灰狼苏格拉底就开始和一只叫做毕达哥拉斯的青蛙一起思考这个问题,从而引出了排列组合的数学概念。排列与组合我们在二年级第一学期也有学过。

首先第一种情况,是假设不限定一个房间住几只小猪的情况,一个房间可以住一只,也可以两只,三只。那么第一只小猪可以有5种情况,第二只小猪也有5种情况,第三只小猪也有5种情况,一共就有5×5×5=125种情况,这种称为“重复排列”。第二种情况是假设每只小猪只能在一个房间的情况,那么第一只小猪就有5种情况,第二只小猪只剩下4个房间可以选,所以是4种情况,第三只小猪剩下3间可以选,所以是3种情况,总共就有5×4×3=60种。绘本用大树的方法来画图,我觉得很生动形象,容易理解,把第一只小猪所进的房间,比作大树的五个主干,第二只小猪所进的房间就是第二层的四根树枝,第三只小猪所进的房间是第三层的三根树枝,大树的分枝越来越少,计算也越来越简单。这就是排列。

可是克桑蒂贝说反正是晚上,根本就分不清哪只是哪只,把小猪涂成一样的黑色就可以了。这就引出了组合的问题来了。我不用管小猪之间的排列位置,三只小猪在3个房间一共有6种排列方法,那么把这6种重复的排除,就是组合的问题,所以是60/6=10种。看到这里,我还是觉得绘本很有趣,也是能够理解的。

很快苏格拉底就提出了新的问题,假设小猪们可以住在相同的房间,而且把在相同房间里面的排位也考虑进去,那会有多少种排列方法呢?真是头疼呀。这里我请教了一下爸爸,爸爸很耐心的给我讲了讲。刚开始的小猪和之前的情况一样,第一只小猪还是有5种情况,第二只小猪就变成了6种,因为要考虑两只小猪在同一个房间的时候,两只小猪排列的位置不同,所以增加了一种情况;到了第三只小猪,第三只小猪可以在前面两只小猪的左边,中间,右边,所以就变成了7种,5×6×7=210,一共就210种了,同样这个是排列,和顺序有关。如果考虑组合,只需要把重复的6种排除,210÷6=35。

我想起数学课上沈老师和我们讲的,排列就是和顺序有关,组合和顺序无关,看了这个绘本,我又深刻的理解了这句话了。同时也觉得排列与组合,虽然有些难,但也是挺有趣的。

还剩页未读,是否继续阅读? 继续免费阅读

下载此文档

范文

Powered 2024 版权所有 ICP备666666号

付费下载
付费获得该文章下载权限
限时特价 2.00
原价:¥10.00
在线支付
付费复制
付费后即可复制文档
特价:2.00元 原价:10.00元
微信支付
x
提示:如无需复制,请不要长按屏幕影响阅读体验
付费下载
付费后即可下载文档
特价:2.00元 原价:10.00元
微信支付
x
付费下载
扫一扫微信支付
支付金额:2.00